Moving forward: dispersal and species interactions determine biotic responses to climate change.
نویسندگان
چکیده
We need accurate predictions about how climate change will alter species distributions and abundances around the world. Most predictions assume simplistic dispersal scenarios and ignore biotic interactions. We argue for incorporating the complexities of dispersal and species interactions. Range expansions depend not just on mean dispersal, but also on the shape of the dispersal kernel and the population's growth rate. We show how models using species-specific dispersal can produce more accurate predictions than models applying all-or-nothing dispersal scenarios. Models that additionally include species interactions can generate distinct outcomes. For example, species interactions can slow climate tracking and produce more extinctions than models assuming no interactions. We conclude that (1) just knowing mean dispersal is insufficient to predict biotic responses to climate change, and (2) considering interspecific dispersal variation and species interactions jointly will be necessary to anticipate future changes to biological diversity. We advocate for collecting key information on interspecific dispersal differences and strong biotic interactions so that we can build the more robust predictive models that will be necessary to inform conservation efforts as climates continue to change.
منابع مشابه
Eco-evolutionary responses of biodiversity to climate change
Climate change is predicted to alter global species diversity1, the distribution of human pathogens2 and ecosystem services3. Forecasting these changes and designing adequate management of future ecosystem services will require predictive models encompassing the most fundamental biotic responses. However, most present models omit important processes such as evolution and competition4,5. Here we...
متن کاملModelling species' range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change.
There is an urgent need for accurate prediction of climate change impacts on species ranges. Current reliance on bioclimatic envelope approaches ignores important biological processes such as interactions and dispersal. Although much debated, it is unclear how such processes might influence range shifting. Using individual-based modelling we show that interspecific interactions and dispersal ab...
متن کاملThe role of dispersal levels, Allee effects and community resistance as zooplankton communities respond to environmental change
1. Worldwide, freshwater zooplankton communities have been subjected to multiple environmental stressors including acidification, invasive species introductions, habitat alteration and climate change. Understanding the factors that affect zooplankton community responses in the face of environmental change is an important goal if ecologists expect to make predictions regarding the impact of curr...
متن کاملMutualism fails when climate response differs between interacting species.
Successful species interactions require that both partners share a similar cue. For many species, spring warming acts as a shared signal to synchronize mutualist behaviors. Spring flowering plants and the ants that disperse their seeds respond to warming temperatures so that ants forage when plants drop seeds. However, where warm-adapted ants replace cold-adapted ants, changes in this timing mi...
متن کاملClimate change and species interactions: ways forward.
With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1297 شماره
صفحات -
تاریخ انتشار 2013